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A numerical procedure is presented for solving the equations of Stokes flow past
a fixed bed of rigid particles and the equations describing the motion of a suspen-
sion of rigid particles upon which a specified force and torque is exerted, for general
flow configurations and arbitrary particle shapes. The problem is formulated in terms
of an integral equation of the first kind for the distribution of the boundary traction
incorporating a Green function that observes the periodicity of the flow and the geom-
etry of the boundaries of the flow, accompanied by appropriate boundary conditions
and integral constraints. The integral equation is solved for two-dimensional flow
by a spectral-element orthogonal-collocation method. Two important components of
the numerical method are (a) preconditioning of the linear system that arises from
the discretization of integral equation followed by reduction to remove the eigen-
functions corresponding to the null eigenvalue over each particle surface and (b) a
physically motivated iterative solution of the master linear system based on parti-
cle clustering. It is found that, for the purpose of computing the force and torque
exerted on fixed particles and the velocity of translation and angular velocity of rota-
tion of freely suspended particles, the orthogonal collocation method has significant
advantages over the trapezoidal discretization. The iterative solution of the integral
equation converges even for closely spaced particles where each particle is treated as a
cluster. c© 1999 Academic Press

Key Words:boundary-integral methods; boundary-element methods; spectral-
element methods; particulate flow; Stokes flow.

I. INTRODUCTION

Viscous flows past fixed beds of particles and flows of suspensions of rigid particles arise
in a broad spectrum of natural, physiological, and engineering applications. The diversity
of these flows is best demonstrated by citing a few characteristic examples.

Flow past fixed beds of particles has been studied with reference to the hydrodynamics
of consolidated and non-consolidated porous media. Investigations of flow through regular

360

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press
All rights of reproduction in any form reserved.



PARTICULATE STOKES FLOW 361

and random arrays yield information on the dependencies of the medium permeability and
species dispersivity on the geometry of the microstructure. Flow through fibrous matrices
consisting of networks of slender particles is encountered in the fabrication of absorbent
tissues and industrial composites, and their modeling provides guidelines for the engineering
design of these materials. Suspensions of rigid particles occur in a large number of industrial
processes, such as slurry transport, photographic emulsion coating, paste manufacturing,
and foodstuff handling. The study of the rheological and transport properties of these
suspensions and the analysis of the dynamics of their microstructure define an important field
of fundamental and applied research. Finally, two-dimensional suspensions of cylindrical
particles have been studied as models of bilayered biological membranes hosting proteins.
Among other properties, the protein diffusivity may be estimated by dynamical simulation
using methods of hydrodynamics.

In the vast majority of the aforementioned applications, the size of the particles is small,
the flow occurs at effectively zero Reynolds number, and the motion may be described
on the basis of the linearized equations of Stokes flow. Early investigations of viscous
particulate flows considered configurations with one or two interacting particles using
analytical, semi-analytical, and perturbations methods. Reviews were given by Happel
and Brenner [1] and, more recently, by Kim and Karrila [2]. The development of effi-
cient and accurate numerical methods that allow the simulation of systems containing
a large number of particles with arbitrary shapes has been a long-standing desire. Over
the past 15 years, theoretical advances in the field of computational particulate micro-
hydrodynamics and the availability of computing power have allowed the development of
several viable approaches, as will be reviewed in the remainder of this Introduction. In this
discussion, we do not include methods for flows with suspended deformable particles in-
cluding drops, bubbles, and capsules [e.g., 3]. An overview of methods for simulating these
flows will be given in a forthcoming special issue of this journal dedicated to multi-phase
flow [4].

Early efforts to perform large-scale numerical simulations of suspensions of rigid particles
are reviewed by Barneset al. [5]. The development of the Stokesian dynamics method by
Brady and co-workers and others considerably enhanced our ability to simulate large-size
systems [6–8]. The numerical algorithm combines the method of multi-pole expansions
originating from the boundary-integral representation to account for far-field interaction,
Faxen’s laws to compute the force and torque exerted on a particle due to the flow induced by
all other particles, and lubrication-flow corrections to account for near-contact interactions.
The method has been used on several occasions to simulate flows past fixed arrays of
spherical particles and flows of monodisperse and polydisperse suspensions of spherical
particles (e.g., [9–11]). A generalization of the method to account for non-spherical particles
shapes is possible [12], but the loss of numerical efficiency and analyticaly tractability is a
practical impediment.

Sangani and Mo [13] developed an improved version of the method of Stokesian dynam-
ics, whose distinguishing feature is that lubrication forces developing between neighboring
spherical or circular particles are modeled by point-force-dipole singularities placed at the
gaps. In a subsequent study [14], the improved method was combined with a fast summa-
tion algorithm that is able to handle sums over a large number of Stokes flow singularities
resulting from the multi-pole expansions. The integrated approach yields a powerful algo-
rithm that can be used to simulate systems of large size. An extension of the method to
non-spherical or non-circular shapes has not been developed.
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In addition to the preceding approaches, lattice Boltzmann methods for viscous flows
were developed by Ladd (e.g., [15]), and finite-element methods were developed by Hu [16].
The former allows the simulation of a large number of particles, on the order of several
thousand, and is able to handle flows at vanishing as well as non-zero Reynolds numbers.
On the downside, the accuracy of the method has not been discussed in detail, and the
implementation involves specialized algorithms that lie beyond the main stream of fluid
dynamics. The finite-element method combines an impressive collection of algorithms for
dynamic regridding, but demands substantial computational resources.

The ability to compute Stokes flow by solving an integral equation of the first kind for
the distribution of the traction over a particle surface was first demonstrated by Youngren
and Acrivos [17]. Although the method has been applied widely to study a variety of in-
ternal and external flows, only a limited number of numerical simulations of multi-particle
systems have been carried out (e.g., [18–20]). A serious concern is the non-uniqueness of
solution of the integral equation resulting in nearly singular linear systems whose condi-
tion number increases rapidly as the numerical error becomes smaller (e.g., [21, p. 207]).
Although, in practice, ill-conditioning may not be detrimental for the accuracy of the solu-
tion, it nevertheless casts a shadow of doubt on the reliability of the numerical method. Practi-
cal concerns associated with high computational times required for compiling the influence
matrix and then solving the dense linear system resulting from the discretization of the
integral equation also arise. These concerns, however, are typical of generalized multi-
particle systems and may be addressed with the implementation of general-purpose meth-
ods [14].

To circumvent the issue of non-uniqueness of the integral equation, Power and Miranda
[22] and Kim and Karrila [2] developed a completed double-layer representation that formu-
lates the problem in terms of an integral equation of the second kind with a unique solution
for the fictitious density of a double-layer potential (see also [23, Chap. 4]). In the case of
the mobility problem, where the force and torque exerted on the particles are specified and
the translational and angular velocities are to be computed, the deflated integral equation
may be solved by the method of successive substitutions, and the translational and angu-
lar velocities arise as part of the solution. Phan-Thien and Kim [21, pp. 228–229] present
results of a numerical simulation of the motion of 1320 particles carried out on a network
of 11 workstations with parallel processing using the PVM communications protocol.

In a complementary approach, Kim and Karrila [2] and Fanet al. [24] formulated the
mobility problem in terms of an integral equation of the second kind with a unique so-
lution for the distribution of the traction over the particle surfaces. The weakly singular
kernel of the integral operator is the adjoint of that of the double-layer potential. A more
general formulation that incorporates a hypersingular integral in the forcing term of the inte-
gral equation was discussed by Ingber and Mondy [25]. Fanet al. [24] presented numerical
solutions for the instantaneous flow of triply periodic suspensions with up to 33 particles,
conducted on parallel processors. To this end, we point out that in most applications of
particulate flow, the quantities of primary interest are the force and torque exerted on a
stationary particle or the velocity and rate of rotation of a moving particle. The traction
distribution or density of a fictitious hydrodynamic potential is significant only insofar as
it is able to produce these macroscopic variables, and their computation may be regarded
as an inevitable intermediate step.

In this work, we develop and study several aspects of the direct boundary-integral method
for Stokes flow past rigid particles, formulated in terms of an integral equation of the first
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kind for the distribution of the traction over the particle surfaces and involving the single-
layer hydrodynamic potential. Advantages of the single-layer formulation compared to the
double-layer formulation and its adjoint are conceptual simplicity, resulting in computer
memory savings, and economical evaluation of the Green’s function kernels. First, we im-
plement a spectral-element orthogonal-collocation method for solving the integral equation
of the first kind and assess its efficiency in comparison with the trapezoidal discretization.
Similar collocation methods for solving integral equations of two- and three-dimensional
Stokes flow were developed by Occhialiniet al. [26] and Muldowney and Higdon [27].
Here, we focus on the aspects of the method pertaining to particulate flow. Second, we
develop a method for eliminating the multiplicity of solutions of the integral equation by
projecting the linear system that arises from the single-layer discretization into the space that
is orthogonal to the discretized eigenvectors of the transpose of the single-layer potential.
Third, we show that a simple iterative procedure for solving the linear system based on
particle clustering converges even in the case of closely spaced particles.

In Sections II and III, we introduce two related boundary-integral formulations and
associated numerical methods. The first formulation pertains to the resistance problem
involving viscous flow past a fixed bed of rigid particles, and the second formulation per-
tains to the mobility problem involving the flow of a suspension of rigid particles upon
which a specified force and torque are exerted. The formulations are developed with ref-
erence to two-dimensional flow, but this is done only to facilitate the presentation and
to allow us to perform extensive numerical experimentation. Analogous formulations for
three-dimensional flow arise by straightforward, albeit nontrivial generalizations, as will be
discussed in the concluding section.

II. FLOW PAST A FIXED BED OF PARTICLES

Consider Stokes flow past a fixed bed of two-dimensional particles, as depicted in Fig. 1.
To develop the boundary-integral formulation, we decompose the velocity field into the
unperturbed component denoted asu∞ and a disturbance component denoted asuD. The
incident velocity is defined as follows:

• For shear flow past a solitary or periodic collection of particles above a plane wall
located aty=w, as illustrated in Figs. 1a, 1b,

u∞x = k(y− w)+ 1

2

δ

µ
(y− w)2, u∞y = 0, (1)

wherek is the shear rate at the wall,δ is the pressure gradient, andµ is the fluid viscosity.
The associated incident pressure field is given byp∞= δx. In Fig. 1b,L is the period of
the flow.
• For flow past a periodic collection of particles in a channel that is confined between

two parallel plane walls, as illustrated in Fig. 1c,

u∞x = U1+ (U2−U1)
y+ h

2h
+ 1

2

δ

µ
(y2− h2), u∞y = 0. (2)

The channel centerline is located aty= 0, h is the channel semi-width,U1 is the velocity
of the lower wall,U2 is the velocity of the upper wall, andδ is the pressure gradient. The
associated incident pressure field is given byp∞= δx.
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FIG. 1. Schematic illustration of several configurations involving flow past a fixed bed of rigid particles or
flow of a suspension of rigid particles upon which a specified force and torque is exerted.

• For uniform flow past a doubly periodic array of particles representing, for example,
a porous medium, as illustrated in Fig. 1d,

u∞x = U, u∞y = 0, (3)

whereU is the constant velocity of the incident flow determining the flow rate through the
array. The associated pressure field is uniform.

To avoid the ill-posedness of two-dimensional Stokes flow in a unbounded domain,
we consider shear flow, doubly periodic flow, and flow bounded by an infinite wall. The
distribution of the traction over the particle surfaces,f =σ · n, whereσ is the Newtonian
stress tensor andn is the unit vector normal to the particle contours pointing into the fluid,
satisfies the integral equation of the first kind∫

C
G ji (x0, x) fi (x) dl(x) = 4πµ u∞j (x0), (4)

whereC is the collection of all particle contours, the pointx0 lies onC, l is the arc length
along C, and G is the Green’s function of the equations of Stokes flow observing the
periodicity and respecting the geometry of the boundaries of the flow under consideration
[22]. The Green’s functions for all types of flows illustrated in Fig. 1 are available in closed
or transcendental but readily computable form (e.g., [23, 28]). It is important to emphasize
that all information regarding the flow periodicity or boundary geometry is carried by the
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Green’s function, and an explicit consideration of the boundaries is not required. Thus, the
numerical methods to be discussed are applicable to a broad range of flows selected by an
appropriate choice for the Green’s function.

The Green’s functions of Stokes flow satisfy the symmetry property

G ji (x0, x) = Gi j (x, x0), (5)

which ensures that the integral operator on the left-hand side of (4) is self-adjoint.
The integral equation (4) has an infinite number of solutions: conservation of mass for

the flow induced by a point force requires that∫
Ck

n j (x0)G ji (x0, x) dl(x0) = 0, (6)

whereCk is the contour of thekth particle. Combining this identity with the symmetry
property (5), we find ∫

Ck

G ji (x0, x)ni (x) dl(x) = 0. (7)

Because of identity (7), any particular solution of the integral equation (4) over a parti-
cle surface may be enhanced with an arbitrary multiple of the normal vector. To this end,
it should be pointed out that the density of the single-layer potential in (4) is a general-
ized mathematical traction playing the role of a distribution density. The physical traction
arises by using the boundary-integral representation to evaluate the stress in terms of the
corresponding Green’s function.

Projecting both sides of (4) onto the normal vector on thekth particle, integrating with
respect to arc length around the particle contour, and using identity (6), we obtain the
solvability condition for (4) ∫

Ck

Ri (x) ni (x) dl(x) = 0, (8)

whereR stand for the right-hand side of (4). Fortunately, this condition is satisfied for any
incompressible incident flow, including the flows described by Eqs. (1)–(3).

A. Orthogonal Collocation

In practice, Eq. (4) is solved routinely by boundary-element methods. First, each particle
contour is discretized into a collection of elements that may be straight segments, parabolic
or high-order elements, or native elements of the particle shapes considered. Second, the
traction over each element is approximated with a truncated expansion of basis functions
of a selected class. In the simplest approach, the traction over each element is assumed
to be constant, corresponding to the trapezoidal discretization. Requiring the satisfaction
of the integral equation (4) at an appropriate number of collocation points, we obtain
a linear system of equations for the coefficients of the basis functions. For the purpose of
computing integrals of the traction and its moments with respect to arc length, the trapezoidal
discretization might appear to be the best choice: the Euler–MacLaurin formula appears
to indicate that these integrals converge at a super-algebraic rate. The singular nature of
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the Green’s function, however, introduces algebraic error terms that decelerate the rate of
convergence.

We implemented an orthogonal collocation method with polynomial basis functions over
each boundary element along the particle contours for solving the integral equation (4).
The Cartesian components of the traction are expressed in terms of an expansion ofm+ 1
polynomials over each element, wherem is the highest polynomial order. The independent
variable of the local expansion is the scaled native parameter that describes the shape of
the boundary element, varying over the interval [−1, 1] from the first to the second end
point. Them+ 1 collocation points are placed at the scaled zeros of an (m+ 1)-degree
orthogonal polynomial of a certain class. The simplest choice,m= 0, approximates the
traction with a constant function over each element and requires one collocation point.
Following the standard implementation of the spectral-element method in terms of nodal
expansions [e.g., 29], we express the polynomial expansion over each element in terms of
Lagrange interpolation polynomials multiplied by the values of the traction at the collocation
points. The influence matrix of the integral equation is computed numerically by the method
of impulses, which involves (a) setting the value of the traction at all collocation points equal
to zero except at one test point where one component is set equal to unity and (b) computing
numerically the single-layer integral on the left-hand side of (4) at all collocation points.

The Green’s function exhibits a logarithmic singularity at the collocation points that share
an element with the test point. The corresponding Lagrange polynomials take the value of
unity at the test point and vanish, at a generally linear rate, at all other element collocation
points termed the non-singular native collocation points. Consequently, the integrand of
the single-layer potential is singular at the test point and regular at the non-singular native
collocation points. Since, however, the derivatives of the integrand are singular at the non-
singular native collocation points, the use of the Gauss–Legendre quadrature to compute
the weakly singular boundary integrals introduces a substantial amount of numerical error
that causes the solution of the linear system to be visibly sensitive to the number of Gauss–
Legendre integration points employed. Numerical experimentation showed that even 20
Gauss–Legendre quadrature points over each element are not sufficient for obtaining a
solution that is independent of the number of quadrature points.

To circumvent this difficulty, we subtract the product of the logarithmic singularity and
the Lagrange interpolation polynomials from the single-layer potential and then compute it
with high accuracy using a four- or five-point integration quadrature for integrands with a
logarithmic singularity. The integration is performed with respect to the natural parameter
of the boundary-element shape. The five-point quadrature integrates exactly integrals with
Lagrange interpolants of degree less than or equal to 9, which is sufficient for the purposes
of the present study. The remaining regular integrals are computed by the 6- or 12-point
Gauss–Legendre quadrature. With this implementation, the results are confirmed to be
independent of the number of quadrature points at least up to the eighth significant figure.

In the majority of applications, we are interested in the force and torque exerted on the
particles for the purpose of estimating, for example, the permeability of a porous medium or
the resistivity of a membrane. This practical desire motivates placing the collocation points
at scaled zeros of Legendre polynomials so that, in the absence of singularities, the integral of
the traction with respect to arc length can be computed directly from the numerical solution
with the highest possible accuracy using the Gauss–Legendre quadrature. Accordingly,
the collocation points were placed at the scaled zeros of Legendre polynomials over the
boundary elements.
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After the integral equation has been discretized and applied at the collocation point,
we obtain a linear algebraic system for the Cartesian components of the traction at the
collocation points,

A z= b, (9)

whereA is the master influence matrix andb is a constant vector. The size of the system (9)
is equal to twice the number of boundary elements over all particles. The vectorzcontains
the unknownx andy components of the traction at the collocation points over all elements,
arranged in the lexicographic order

z= ( f 1,1
x , f 1,2

x , . . . , f 1,Nc,1
x , f 1,1

y , f 1,2
y , . . . , f 1,Nc,1

y

,f 2,1
x , f 2,2

x , . . . , f 2,Nc,2
x , f 2,1

y , f 2,2
y , . . . , f 2,Nc,2

y

. . .
(10)

,f i,1
x , f i,2

x , . . . , f i,Nc,i
x , f i,1

y , f i,2
y , . . . , f i,Nc,i

y

. . .

,f N,1
x , f N,2

x , . . . , f N,Nc,N
x , f N,1

y , f N,2
y , . . . , f N,Nc,N

y

)
,

where f i, j
x is thex component of the traction on thej th element of thei th particle,Nc,i is

the number of collocation points around the contour of thei th particle, andN is the number
of particles; f i, j

y is defined in a similar way. The individual scalar equations in system (9)
are arranged in an order corresponding to (10).

B. Preconditioning

The discrete form of the integral identity (7) corresponding to the discretization under-
lying the linear system (9) is

A w(k) = 0, (11)

k= 1, . . . , N, where the discrete exact or approximate eigenvectorw(k) contains the
x andy components of the normal vector at the collocation points around thekth particle
contour. When the boundary elements are straight segments, in which case the discretized
particle contour is polygonal, the normal vector over each element is constant, and condition
(11) is satisfied up to the numerical error associated with the numerical computation of the
elements of the master influence matrix. In the present implementation where highly accu-
rate numerical integration is employed, the numerical error is comparable to the round-off
error. More generally, as the discretization error is reduced by increasing the number of
collocation points,w(k) reduces to an exact eigenvector.

The discussion in the previous paragraph suggests that the matrixA introduced in
Eq. (9) is nearly or precisely singular, reflecting the non-uniqueness of solution of the
integral equations (4); as the truncation error is reduced, the condition number is raised
(e.g., [21, p. 207]). To the author’s knowledge, in all previous numerical solutions of
this or similar integral equations, the nearly singular behavior of the master linear ma-
trix was ignored, and the numerical method had to rely on the discretization error, the
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round-off error, or the inherent geometrical symmetry of the flow to produced a sen-
sible solution. General methods for regularizing nearly singular algebraic systems by
spectrum deflation have been discussed by several authors (e.g., [30–32]). In the present
case, knowledge of the adjoint eigenvectors of the single-layer potential corresponding to
the null eigenvalue allows us to perform preconditioning with the least amount of per-
turbation.

The discrete form of the right-hand side of the solvability condition (8) corresponding to
the discretization underlying the system (9) is∑

j

(
R(k)i

)
j

(
n(k)i

)
j
h(k)j , (12)

where j runs over the collocation points around the contour of thekth particle, andh(k)j

is an integration weight with respect to arc length associated with the Gauss–Legendre
quadrature, playing the role of a discrete metric. When the particle contour is polygonal and
the vectorR varies in a polynomial-like manner over an element with a degree that is lower
than that required for exact integration by use of the Gauss–Legendre quadrature, subject
to the available number of collocation points, the discrete form of the solvability condition
is satisfied to machine accuracy.

To render the system (9) singular while guaranteeing an infinity of solutions, we premul-
tiply both sides of it by the preconditioning matrixP defined as

P=
N∏

k=1

(
I − v(k)

T
v(k)
)
, (13)

where the superscript T stands for the transpose, and the vectorsv(k) are global adjoint
eigenvectors with the following properties: the length ofv(k) is equal to twice the total
number of collocation points over all particles; all components ofv(k) are equal to zero except
for the components corresponding to thekth particle block on the right-hand side of (10)
that hosts the local discrete eigenvectorα(k)(n(k)i ) j h

(k)
j , j = 1, . . . , Nc,i , where summation

is not implied overj , andα(k) is a scaling coefficient adjusted so that the length ofv(k) is
equal to unity. Since the setv(k) is orthogonal, the order of multiplication on the right-hand
side of (13) is immaterial. In the numerical implementation, only those rows and columns
of the matrixA corresponding to the non-zero entries ofv(k) are altered during thekth
projection.

After preconditioning, the system (9) takes the form

APzP = bP, (14)

whereAP=PA, bP=Pb, and the superscript P stands for preconditioned. The vectorv(k)

is an exact eigenvector of the transpose of the singular matrixAP corresponding to the zero
eigenvalue, and the following solvability condition is also satisfied to machine accuracy:

v(i ) · bP = 0. (15)

Thus, the projection guarantees the satisfaction of both the integral identity (6) and the solv-
ability condition (8), while introducing the mildest possible perturbation of the right-hand
side: when expression (12) is equal to zero, the projection has no effect on the right-hand side.



PARTICULATE STOKES FLOW 369

C. Reduction

To obtain one solution of the singular system (14), we set the value of they component
of the traction at the last collocation point around each particle equal to an arbitrary value
that was chosen to be zero,f i,Nc,i

y = 0, i = 1, 2, . . . , N. This is permissible as long as the
corresponding normal vector does not point in thex direction; if it does, then another
unknown can be set equal to zero. Discarding the corresponding equations from system
(14), we obtain the system

APRzR = bPR, (16)

where the superscript R stands for reduced. Equation (16) has a unique solution that may
be computed using any dense-system linear solver, for example, a solver based on Gauss
elimination.

D. Iterative Solution

Even with a moderate number of particles, the computational cost required for solving
the linear system is unaffordable. In practical applications, we are interested in flows with
at least 25 particles and require a minimum of 32 collocation points around each particle for
reasonable accuracy, corresponding to a linear system with 1600 unknowns. It is imperative
that the linear system be solved by an iterative method.

We have implemented a physically motivated iterative method that is similar to the domain
decomposition method developed by Phan-Thien and Tullock with reference to the adjoint
double-layer representation [33]. The idea is to recast the primary or preconditioned and
reduced linear system into the form

MQz= NQz+ bQ, (17)

where the qualifier Q either is absent or stands for PR, and then perform Jacobi or Gauss–
Siedel iterations based on the recursion formula

MQz(k+1) = NQz(k) + bD, (18)

where the superscript(k) designates the number of iterations. The form of (18) is based on
the splittingAQ=MQ−NQ, whereMQ is a block-diagonal matrix whose blocks correspond
to particle clusters. The individual equations corresponding to particle clusters have been
decoupled, and solving forz(k+1) requires the inversion of diagonal blocks. When only one
particle cluster is defined encompassing all particles,MQ=A,NQ= 0, the solution is found
after only one iteration.

When each particle is treated as a cluster, solving forz(k+1) requires the inversion ofN
diagonal blocks. In the case of non-periodic flow in free space, this needs to be done only
once, independent of the particle orientation: the tensorial nature of the Green’s function
allows us to construct the inverse of the diagonal blocks corresponding to a certain particle
orientation from that for a different orientation by an orthogonal transformation. This prop-
erty is especially important when multiple solutions with different relative particle positions
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are to be performed as, for example, in the Monte Carlo simulation of flow through random
arrays. The relative particle and particle-boundary position and orientation, however, affect
the off-diagonal block elements of the master linear system; that is, they affect the matrix
NQ on the right-hand side of (18). Treating each particle as a cluster effectively implements
Faxen’s law for computing the force and torque due to an incident flow used in the method of
Stokesian dynamics for Stokes flow. Lubrication tractions are taken into account explicitly
by means of the boundary-integral equation.

E. Results and Discussion

Wannier [34] derived an exact solution of the flow due to a circular particle rotating with
angular velocityÄ or translating with velocityU parallel to a plane wall. His results imply
that the flow can be expressed in terms of a finite sum of Stokes flow singularities located
at appropriate points inside the particle and at image points with respect to the wall. Thex
component of the force and thez component of the torque with respect to the center of a
particle, both per unit width of the particle, are given by

Fx = −8πµU

(
ln

yc+
√

y2
c − a2

yc−
√

y2
c − a2

)−1

(19)

and

Mz = −4πµa2Ä
yc√

y2
c − a2

, (20)

whereyc is the distance of the particle center from the wall anda is the particle radius. Note
that as the particle approaches the wall, that is, asyc tends toa from higher values, both
the force and the torque tend to become singular in different functional forms. Irregular
behavior of the force arises in the limit as the particle moves away from the wall due to the
ill-posedness of two-dimensional infinite Stokes flow.

In Table I, we present the error in the force and torque computed using the numerical
method described previously in this section, foryc= 1.5a; NE is the number of boundary
elements,NEC is the number of collocation points per element, andNTC is the total number

TABLE I

Error in the Force and Torque Exerted on a Circular Particle of Radius a

Rotating with Angular Velocity Ω and Translating with Velocity U Parallel

to a Plane Wall Located aty= 0 for yc = 1.5a

NE NEC NTC |Fx − FExact
x |/µU |Mz−MExact

z |/µa2Ä

8 2 16 0.01554 0.01256
16 1 16 0.01437 0.09109
8 4 32 0.00006 0.00005

16 2 32 0.00099 0.00091
32 1 32 0.00179 0.02492
8 8 64 0.00001 0.00001

16 4 64 0.00000 0.00000
32 2 64 0.00012 0.00013
64 1 64 0.00022 0.00650
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of collocation points. In the boundary-integral formulation, we employ the Green’s function
for semi-infinite Stokes flow bounded by a plane wall, which is expressible in terms of the
free-space singularity and a few singularities located at the reflection of the point force with
respect to the wall [e.g., 23]. The boundary elements are native elements of a circle with
equal arc lengths and are parametrized in terms of the polar angle. Using Eqs. (19) and (20),
we find that the exact values for the force and torque are given byFx =−13.0570µU and
Mz=−16.8600µa2Ä.

The results in Table I illustrate the superiority of the orthogonal-collocation method
over the trapezoidal discretization. For a fixed total number of collocation points, the
accuracy improves dramatically as the number of element collocation points is raised while
the number of elements is reduced so that their product remains constant, except for the
crudest discretization with eight elements around the particle contour. For the trapezoidal
discretization, increasing the number of elements by a factor of 2 reduces the error by a
factor of 8, indicating a third-order discretization error. In contrast, for the spectral element
discretization, increasing the number of collocation points over an element by a factor of 2
causes a seemingly exponential reduction in the numerical error. The anomalous behavior
observed forNE= 8 andNEC= 8 is probably due to the accumulation of round-off error.

To perform a more demanding test, we consider a particle placed closer to the wall,
yc= 1.05a. In Table II, we present the error in the computed force and torque; the exact
values are given byFx =−39.90277µU and Mz=−41.21328µa2Ä. The behavior of
the solution is similar to that described in the preceding paragraph. In Fig. 2, we plot the
distribution of the shear stress for a particle translating parallel to the wall. The hollow
circles correspond toNE= 64 andNEC= 1, and the filled squares correspond toNE= 8 and
NEC= 8. It is remarkable that, for the second type of discretization, the error in the force is
less than 0.05% in spite of the strong variations in the traction spanning nearly two orders
of magnitude over a narrow zone of lubrication flow.

To illustrate the performance of the method for non-circular shapes, in Tables III and IV
we present the force and torque exerted on an elliptical particle with major axisa and minor
axisb translating parallel to a plane wall, for aspect ratioa/b= 5. The boundary elements
are native elements of the ellipse described in terms of its natural parameter. The major
or minor particle axis is perpendicular or parallel to the wall, respectively for Tables III
and IV, and the clearance between the particle and the wall isε= 0.05a. In the first case,

TABLE II

Error in the Force and Torque Exerted on a Circular Particle of Radius a

Rotating with Angular Velocity Ω and Translating with Velocity U Parallel

to a Plane Wall Located aty= 0, for yc = 1.05a

NE NEC NTC |Fx − FExact
x |/µU |Mz−MExact

z |/µa2Ä

8 2 16 2.19331 6.58803
16 1 16 1.47488 6.91860
8 4 32 0.21713 0.23512

16 2 32 0.62802 0.38974
32 1 32 1.41577 0.60800
8 8 64 0.01044 0.00443

16 4 64 0.01280 0.01701
32 2 64 0.18388 0.16490
64 1 64 0.37801 0.31138
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FIG. 2. Distribution of the shear stressτ over the surface of a circular particle of radiusa translating parallel
to a plane wall, plotted against the arc length. The center of the particle is located at a distance equal to 1.05a
above the wall. The hollow circles correspond toNE= 64 andNEC= 1, and the filled squares correspond toNE= 8
andNEC= 8.

the results converge rapidly with increasing number of collocations, as in the case of the
circular particle previously considered. In the second case, the convergence is slower due to
the large extent of the lubrication zone underneath the elongated particle. In Fig. 3, we plot
the distribution of the shear stress corresponding to the conditions of Table IV; the hollow
circles correspond toNE= 64 andNEC= 1, and the filled squares correspond toNE= 8 and
NEC= 8. In this case, the positioning of the collocation points has a strong influence on the
computed distribution of the traction.

Having established the properties of the spectral-element method, we proceed to consider
the issue of convergence of the iterative method expressed by Eq. (18). As a test case, we
consider simple shear flow past two circular particles of radiusa, separated by the distanceε,
held stationary in simple shear flow. The center of the simple shear flow is placed midway

TABLE III

Force and Torque Exerted on an Elliptical Particle with Major Axis

Equal to a and Aspect Ratio Equal to 5, Translating with Velocity U

with the Minor Axis Parallel to a Plane Wall

NE NEC NTC Fx/µU Mz/µaU

8 4 32 −22.74495 −10.53661
16 2 32 −22.66536 −10.46246
32 1 32 −22.58783 −10.44217
8 8 64 −22.72806 −10.52162

16 4 64 −22.72825 −10.52192
32 2 64 −22.72524 −10.51882
64 1 64 −22.69395 −10.50306

Note.The clearance between the particle and the wall isε= 0.05a.
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TABLE IV

Force and Torque Exerted on an Elliptical Particle with Major Axis

Equal to a and Aspect Ratio Equal to 5, Translating with VelocityU

with the Major Axis Parallel to a Plane Wall

NE NEC NTC Fx/µU Mz/µaU

8 4 32 −44.68229 73.14232
16 2 32 −44.26615 68.58008
32 1 32 −42.21933 55.01139
8 8 64 −43.82250 64.93227

16 4 64 −43.94968 66.21390
32 2 64 −43.82126 65.17173
64 1 64 −43.52646 62.91239

Note.The clearance between the particle and the wall isε= 0.05a.

between the particles, so that the force exerted on the doublet vanishes preventing the
logarithmic divergence of the velocity at infinity. Since the properties of the effective pro-
jection matrix associated with Eq. (18) are independent of the type of incident flow, the
results are applicable to more general types of flow and orientations of the particle pair.
In these test computations, each particle is treated as one cluster. In Fig. 4, we plot on a
log-linear scale the root mean square of the error in the two components of the traction
against the number of iterations forε/a= 0.20, 0.10, 0.06, 0.02. The iterations converge
at a linear rate in all cases, even in the case of nearly touching particles, but the rate of
convergence is significantly reduced as the particles come closer.

Similar results were obtained for many-particle configurations, where single particles
or groups of particles are treated as clusters. The rate of convergence of the iterations
was found to depend on the number of clusters defined, but convergence was observed

FIG. 3. Distribution of the shear stressτ over the particle surface corresponding to the conditions of Table IV,
plotted against the arc length. The hollow circles correspond toNE= 64 andNEC= 1, and the filled squares
correspond toNE= 8 andNEC= 8.
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FIG. 4. Convergence test for two circular particles of radiusa separated by a distanceε. Root mean square of
the error in the two components of the traction plotted against the number of iterations forε/a= 0.20, 0.10, 0.06,
0.02.

under demanding conditions where the particles formed agglomerates and each particle
was treated as a cluster. For nearly touching particles, reducing the number of elements
while holding the total number of collocation points fixed reduces the rate of convergence
and under some extreme conditions may even lead to divergence.

In Fig. 5, we plot on a log-linear scale the root mean square of the error in the two
components of the traction against the number of iterations for uniform flow past a random

FIG. 5. Uniform flow through a doubly periodic matrix of 25 elliptical particles displayed in Fig. 6. Root
mean square of the errorE in the two components of the traction plotted against the number of iterations. In the
iterations, each particle is treated as a cluster.



PARTICULATE STOKES FLOW 375

FIG. 6. Streamline pattern of uniform flow through a doubly periodic array of randomly distributed fixed
elliptical particles, representing a non-consolidated porous medium.

doubly periodic lattice of 25 elliptical particles displayed in Fig. 6. The two curves corre-
spond to two different levels of discretization with 16 or 32 elements around each particle
contour, each one hosting one collocation point. In the boundary–integral formulation, we
account for the periodicity of the flow by use of the doubly periodic Green’s function of
two-dimensional Stokes flow [28]. In this computation, each particle is treated as a cluster.
Figure 5 confirms that the rate of convergence for well-separated particles is insensitive to
the level of discretization. In this case, the direct solution of the master linear system would
require a number of operations on the order of 109, whereas the inversion of the block
diagonal matrices corresponding to the individual particles requires a number of operations
on the order of 106, thus allowing for significant computational savings. The differences
are exacerbated when a larger number of particles or collocation points are employed.

III. FLOW OF A SUSPENSION OF RIGID PARTICLES

In the second class of problems, we consider the flow of a suspension of rigid particles
upon which a specified force or torque is exerted. In practice, the force may be due to
gravity, and the torque may be due to an electromagnetic field exerted on magnetized or
electrically polarized particles. Thekth particle translates with velocityU(k) and rotates
around thez axis with respect to a designated particle centerx(k)c with angular velocityÄ(k),
while experiencing a specified forceF(k) and torqueT(k).

To develop the boundary–integral formulation, we decompose the velocity into an inci-
dent velocity that prevails in the absence of the particles,u∞, and a disturbance velocity
due to the particles,uD. Applying the boundary–integral representation at a pointx0 located
at the surface of thekth particle and requiring the rigid-body-motion boundary condition

u j (x0) = U (k)
j + ε j lmÄ

(k)
l

(
x0− x(k)c

)
m
, (21)
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we derive the integral equation

1

4πµ

∫
C

Gi j (x, x0) fi (x) dl(x)+U (k)
j + ε j lmÄ

(k)
l

(
x0− x(k)c

)
m
= u∞j (x0), (22)

whereC is the collection of all particle contours, andf is the traction.
Specifying the force and torque exerted on the particles demands the integral constraints∫

C
fi (x) dl(x) = F (k)

i (23)

and

εzlm

∫
C

fl (x)
(
x− x(k)c

)
m

dl(x) = T (k)
z . (24)

The numerical task is to solve the integro-algebraic equation (22) for the boundary traction
and for the linear and angular velocities of the particle, subject to the constraints imposed
by (23) and (24). As in the case of the resistance problem considered in Section II, the
integral equation (22) has an infinite number of solutions; any particular solution over each
particle contour may be enhanced with an arbitrary multiple of the normal vector.

To solve the integral equation (22) for the traction, we use the spectral element method
described in Section II. Requiring the satisfaction of the integral equation (22) at collocation
points located at the scaled zeros of Legendre polynomials over each element, and using the
Gauss–Legendre quadrature to compute the integrals in (23) and (24) over each element,
we find the system of linear algebraic equationsAz= b, whereA is the master influence
matrix, b is a constant vector, and the vectorz contains the unknown values of thex and
y components of the traction over all elements, as well as the particle linear and angular
velocities, in the following order:

z= ( f 1,1
x , f 1,2

x , . . . , f 1,N1
x , f 1,1

y , f 1,2
y , . . . , f 1,Nc,1

y ,U (1)
x ,U (1)

y , Ä(1)

, f 2,1
x , f 2,2

x , . . . , f 2,N2
x , f 2,1

y , f 2,2
y , . . . , f 2,Nc,2

y ,U (2)
x ,U (2)

y , Ä(2)

. . .

, f i,2
x , f i,2

x , . . . , f i,NN
x , f i,1

y , f i,2
y , . . . , f i,Nc,i

y ,U (i )
x ,U

(i )
y , Ä

(i )

. . .

, f N,2
x , f N,2

x , . . . , f N,NN
x , f N,1

y , f N,2
y , . . . , f N,Nc,N

y ,U (N)
x ,U (N)

y , Ä(N)
)
. (25)

The individual scalar equations of the linear system are arranged in a similar order, with the
x and y components of the force constraint (23) and the torque constraint (24) appended
to the boundary–integral equations written for each particle contour. The corresponding
rows of the matrixA are expressed in terms of the integration weights associated with the
collocation point. Preconditioning, reduction, and iterative solution of the extended master
linear system are done as discussed in Section II. The updates are based on the algorithm

MQz(k+1) = NQz(k) + bD, (26)

whereMQ is a block-diagonal matrix whose blocks correspond to particle clusters. The
only new feature is that the particle velocity and rate of rotation are also updated during the
iterations along with the boundary traction.
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TABLE V

Velocity of Translation and Angular Velocity of Rotation of

a Circular Particle of Radius a in a Symmetric Particle Pair

Subjected to Simple Shear Flow with Shear Ratek

NE NEC NTC Ux/ka Äz/k

8 4 32 0.83663 0.72173
16 2 32 0.83621 0.72217
32 1 32 0.83718 0.72112
8 8 64 0.83671 0.72165

16 4 64 0.83667 0.72169
32 2 64 0.83665 0.72172
64 1 64 0.83671 0.72165

Note.The clearance between the particle and the wall isε= 0.04a.

A. Results

First, we illustrate the effectiveness of the spectral-element method by considering the
motion of two circular force-free and torque-free particles of radiusa, subject to a simple
shear flow with shear ratek. The particle centers are placed perpendicular to the direction
of the flow, and the clearance between the particle surfaces isε= 0.04a. In the iterative
solution, each particle is treated as an individual cluster of collocation points. In Table V, we
present the velocity of translation and the angular velocity of rotation of one particle for an
assortment of boundary elements and number of collocation points over each element. The
results show that using eight elements over each particle,NE= 8, and a third-order poly-
nomial expansion,NEC= 4, produces a velocity of translation and rate of rotation accurate
to the fourth significant figure, which is adequate in dynamical simulations. Interestingly,
for reasons that are not entirely clear, the accuracy of the results for 64 collocation points
around each particle is insensitive to the number of elements employed.

Next, we consider the convergence of the iterative method expressed by Eq. (26). As a test
case, we consider simple shear flow past two force-free and torque-free circular particles of
radiusa, separated by the distanceε. In Fig. 7, we plot on a log-linear scale the root mean
square of the error in the two components of the traction against the number of iterations for
ε/a= 0.20, 0.10, 0.04, corresponding toNE= 16 andNEC= 2. The iterations converge at
a linear rate in all cases, but the rate of convergence is significantly reduced as the particles
come closer. Whenε/a= 0.02, the iterations diverge.

To further illustrate the performance of the method, in Fig. 8 we plot on a log-linear
scale the root mean square of the error in the solution vector plotted against the number of
iterations, for simple shear flow past a random doubly periodic distribution of 25 force-free
and torque-free elliptical particles, corresponding to the configuration displayed in Fig. 5.
The solid, dashed, and dot-dashed curves correspond, respectively, to three different levels
of discretization with 16, 32, or 48 elements around each particle contour, each hosting one
collocation point. In the boundary–integral formulation, we account for the periodicity of
the flow by using the doubly periodic Green’s function of two-dimensional Stokes flow.
The iterations converge much faster than in the case of flow past a fixed array considered
in Section II. This is attributed to the faster decay of the flow induced by each particle in
the absence of a net force and torque exerted on it.
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FIG. 7. Convergence test for two circular particles of radiusa separated by a distanceε. Root mean square
of the errorE in the solution vector plotted against the number of iterations forε/a= 0.20, 0.10, 0.04.

FIG. 8. Simple shear flow past a random doubly periodic distribution of 25 force-free and torque-free elliptical
particles displayed in Fig. 6. Root mean square of the errorE plotted against the number of iterations. In the
iterations, each particle is treated as a cluster.



PARTICULATE STOKES FLOW 379

IV. DISCUSSION

We have made three contributions to the implementation of boundary-element meth-
ods for particulate Stokes flow. We have implemented and investigated the properties of
the spectral-element collocation method building on the previous work of Higdon and
co-workers [25, 26], we have developed a practical method for removing the multiplicity of
solutions by projection, and we have shown that a simple iterative method for solving the
master linear system converges even under demanding conditions, both for the resistance
and for the mobility problem.

For the boundary-integral method to become an effective computational tool in simulat-
ing fluid–particle systems of large size, several issues must be further considered. In both
the resistance and the mobility problem, the vast majority of the CPU time is expended
in computing the entries of the master influence matrix by evaluating regular and singu-
lar integrals over the boundary elements. First, the computational cost may be reduced by
evaluating the Green’s function by means of interpolation from look-up tables [e.g., 36].
Second, when the particles are well separated, the integrand of the single-layer integral
over the boundary elements shows only mild fluctuations, and this allows us to describe
hydrodynamic interactions with lower resolution and to use the method of multi-pole ex-
pansions [13]. In the first approach, the rows and columns of the master influence matrix
corresponding to collocation points located on well-separated particles are computed with
low-order quadratures or even by trapezoidal integration. Additional simplifications might
be possible by the use of the fast-summation methods for the rapid evaluation of surface
integrals developed by Greenbaum and Mayo [37]. These issues are the topic of current in-
vestigation and will be discussed in a forthcoming paper along with the results of dynamical
simulations.

The developments presented in this paper may be extended in a straightforward manner
to three-dimensional flow. In one implementation of the boundary-element method, the
surface of each three-dimensional particle is discretized into a set of triangular elements,
and the three Cartesian components of the traction are expressed in terms of an expan-
sion of basis functions developed by Dubiner [38], Sherwin and Karniadakis [39], and
Heinrichs [40], involving Jacobi polynomials. Preconditioning of the master linear system
and reduction may be carried out as discussed in Section II for two-dimensional flow. The
integral equation is then applied at the zeros of the aforementioned basis functions or at
base points of a triangle quadrature to achieve spectral accuracy. The accurate computation
of the singular boundary integrals, however, requires the use of specialized quadratures
for the integration of singular and weakly singular integrals over the triangles that are not
available.

In conclusion, the development of accurate and efficient numerical procedures for the
dynamical simulation of suspensions with a large number of arbitrarily shaped particles is
a prerequisite for gaining further understandings into the dynamics of suspensions. For ex-
ample, the question of whether hydrodynamic interactions between non-spherical particles
yield a particle orientation distribution that is independent of the initial condition in the
absence of random Brownian rotation remains unanswered [41]. If the answer is affirma-
tive, then the probability distribution function of the particle orientation may be described
by a generalized diffusion equation involving a rotational hydrodynamic diffusivity that
can be evaluated from the results of dynamical simulations using methods of statistical
mechanics.
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